High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields
نویسندگان
چکیده
The gas dynamics equations, coupled with a static gravitational field, admit the hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term. Many astrophysical problems involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly capture the effect of gravitational force in the simulations. Improper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates from the equilibrium after a long time run. In this paper we design high order well-balanced finite difference WENO schemes to this system, which can preserve the hydrostatic balance state exactly and at the same time can maintain genuine high order accuracy. Numerical tests are performed to verify high order accuracy, well-balanced property, and good resolution for smooth and discontinuous solutions.
منابع مشابه
A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields
This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction of a well-balanced scheme for gas dynamic equations are addressed. First, the inclusion of the gravitational source term into the flux function is ...
متن کاملADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement
We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resul...
متن کاملPositivity-preserving high order finite difference WENO schemes for compressible Euler equations
In [19, 20, 22], we constructed uniformly high order accurate discontinuous Galerkin (DG) which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics. The technique also applies to high order accurate finite volume schemes. In this paper, we show an extension of this framework to construct positivity-preserving high order essentially non-oscillatory (E...
متن کاملAn Efficient WENO-reconstruction-based high-order Gas-kinetic Scheme for Viscous Flows
Based on the Weighted Essential Non-Oscillatory (WENO) reconstruction for the macroscopic flow variables and the direct use of the corresponding gas distribution function of the NavierStokes (NS) solution, a high-order finite volume gas-kinetic scheme is constructed. Different from the previous high-order gas-kinetic method [Li, Xu, and Fu, A high-order gas-kinetic Navier-Stokes solver, J. Comp...
متن کاملA Symplecticity-preserving Gas-kinetic Scheme for Gas Dynamic Equations under External Forcing Field
In this paper, based on the BGK equation, Liouville's theorem, and symplecticity preserving property of a Hamiltonian flow, a well-balanced kinetic scheme for the compressible Navier-Stokes equations under external forcing field is developed. In order to construct such a scheme, the physical process of particles transport through a potential barrier at a cell interface will be modeled with pene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 54 شماره
صفحات -
تاریخ انتشار 2013